comparison_cor.Rd
Calculates correlation between a cell and a matrix of the same dimensions extracted from the cell's associated region.
comparison_cor(
cellHeightValues,
regionHeightValues,
fft_ccf_df,
use = "pairwise.complete.obs"
)
list/tibble column of x3p objects containing a reference scan's cells (as returned by comparison_cellDivision)
list/tibble column of x3p objects containing a target scan's regions (as returned by comparison_getTargetRegions)
data frame/tibble column containing the data frame of (x,y) and CCF values returned by comparison_fft_ccf
argument for stats::cor
A vector of the same length as the input containing correlation values at the estimated alignment between each reference cell and its associated target region
data(fadul1.1_processed,fadul1.2_processed)
cellTibble <- fadul1.1_processed %>%
comparison_cellDivision(numCells = c(8,8)) %>%
dplyr::mutate(regionHeightValues =
comparison_getTargetRegions(cellHeightValues = cellHeightValues,
target = fadul1.2_processed)) %>%
dplyr::mutate(cellPropMissing =
comparison_calcPropMissing(heightValues = cellHeightValues),
regionPropMissing =
comparison_calcPropMissing(heightValues = regionHeightValues)) %>%
dplyr::filter(cellPropMissing <= .85 & regionPropMissing <= .85) %>%
dplyr::mutate(cellHeightValues =
comparison_standardizeHeights(heightValues = cellHeightValues),
regionHeightValues =
comparison_standardizeHeights(heightValues = regionHeightValues)) %>%
dplyr::mutate(cellHeightValues =
comparison_replaceMissing(heightValues = cellHeightValues),
regionHeightValues =
comparison_replaceMissing(heightValues = regionHeightValues)) %>%
dplyr::mutate(fft_ccf_df = comparison_fft_ccf(cellHeightValues,
regionHeightValues)) %>%
dplyr::mutate(pairwiseCompCor = comparison_cor(cellHeightValues,
regionHeightValues,
fft_ccf_df))
head(cellTibble)
#> # A tibble: 6 x 7
#> cellIndex cellHeightValues regionHeightValues cellPropMissing regionPropMissi~
#> <chr> <named list> <named list> <dbl> <dbl>
#> 1 1, 6 <x3p> <x3p> 0.833 0.811
#> 2 2, 7 <x3p> <x3p> 0.657 0.700
#> 3 2, 8 <x3p> <x3p> 0.834 0.757
#> 4 3, 8 <x3p> <x3p> 0.353 0.638
#> 5 4, 8 <x3p> <x3p> 0.153 0.576
#> 6 5, 1 <x3p> <x3p> 0.117 0.771
#> # ... with 2 more variables: fft_ccf_df <named list>, pairwiseCompCor <dbl>